lunes, 28 de noviembre de 2011

ESFUERZO Y DEFORMACION


ESFUERZO Y DEFORMACION







INTRODUCCIÓN


El diseño de cualquier elemento o de un sistema estructural implica responder dos preguntas: ¿El elemento es resistente a las cargas aplicadas? y ¿Tendrá la suficiente rigidez para que las deformaciones no sean excesivas e inadmisibles? Las respuestas a estas preguntas implican el análisis de la resistencia y rigidez de una estructura, aspectos que forman parte de sus requisitos. Estos análisis comienzan por la introducción de nuevos conceptos que son el esfuerzo y la deformación, aspectos que serán definidos a continuación (Salvadori y Heller, 1998; Timoshenko y Young, 2000).






Esfuerzo

Idea y necesidad del concepto de esfuerzo. Las fuerzas internas de un elemento están ubicadas dentro del material por lo que se distribuyen en toda el área; justamente se denomina esfuerzo a la fuerza por unidad de área, la cual se denota con la letra griega sigma (σ) y es un parámetro que permite comparar la resistencia de dos materiales, ya que establece una base común de referencia.

σ = P/A

Donde: 
P≡ Fuerza axial;
A≡ Area de la sección transversal.

Cabe destacar que la fuerza empleada en la ec. 1 debe ser perpendicular al área analizada y aplicada en el centroide del área para así tener un valor de σ constante que se distribuye uniformemente en el área aplicada. La ec. 1 no es válida para los otros tipos de fuerzas internas1; existe otro tipo de ecuación que determine el esfuerzo para lasotras fuerzas, ya que los esfuerzos se distribuyen de otra forma.


Unidades

El esfuerzo utiliza unidades de fuerza sobre unidades de área, en el sistema internacional (SI) la fuerza es en Newton (N) y el área en metros cuadrados (m2), el esfuerzo se expresa por N/m2 o pascal (Pa). Esta unidad es pequeña por lo que se emplean múltiplos como el es el kilopascal (kPa), megapascal (MPa) o gigapascal (GPa). En el sistema americano, la fuerza es en libras y el área en pulgadas cuadradas, así el esfuerzo queda en libras sobre pulgadas cuadradas (psi). Particularmente en Venezuela la unidad más empleada es el kgf/cm2 para denotar los valores relacionados con el esfuerzo (Beer y Johnston, 1993; Popov, 1996; Singer y Pytel, 1982; Timoshenko y Young, 2000).








DEFORMACIÓN

La resistencia del material no es el único parámetro que debe utilizarse al diseñar o analizar una estructura; controlar las deformaciones para que la estructura cumpla con el propósito para el cual se diseñó tiene la misma o mayor importancia. El análisis de las deformaciones se relaciona con los cambios en la forma de la estructura que generan las cargas aplicadas. 1 Fuerza cortante, momento flector y momento torsor.

     Una barra sometida a una fuerza axial de tracción aumentara su longitud inicial; se puede observar que bajo la misma carga pero con una longitud mayor este aumento o alargamiento se incrementará también. Por ello definir la deformación (ε) como el cociente entre el alargamiento δ y la longitud inicial L, indica que sobre la barra la deformación es la misma porque si aumenta L también aumentaría δ. Matemáticamente la deformación sería:

ε =δ/L

Al observar la ec. 2 se obtiene que la deformación es un valor adimensional siendo el orden de magnitud en los casos del análisis estructural alrededor de 0,0012, lo cual es un valor pequeño (Beer y Johnston, 1993; Popov, 1996; Singer y Pytel, 1982).











3 comentarios:

  1. QUE HAY COMPAÑEROS ESTA VERY GOOD LA INFORMACIONA DE ESFUEERZO DEFORMACION COMO EN LAS UNIDADES KE SE REPRESENTA

    ResponderEliminar
  2. El tema esfuerzo deformacion! muy importate por que aqui conocemos las propiedades de los materiales de que estan hechos y cual seran sus etapas para la deformacion de un materia, como el aluminio donde vimos los pasos para ser su fundicion.. muy buena su informacion!

    ResponderEliminar